Triclosan Computational Conformational Chemistry Analysis for Antimicrobial Properties in Polymers.
نویسنده
چکیده
Triclosan is a diphenyl ether antimicrobial that has been analyzed by computational conformational chemistry for an understanding of Mechanomolecular Theory. Subsequent energy profile analysis combined with easily seen three-dimensional chemistry structure models for the nonpolar molecule Triclosan show how single bond rotations can alternate rapidly at a polar and nonpolar interface. Bond rotations for the center ether oxygen atom of the two aromatic rings then expose or hide nonbonding lone-pair electrons for the oxygen atom depending on the polar nature of the immediate local molecular environment. Rapid bond movements can subsequently produce fluctuations as vibration energy. Consequently, related mechanical molecular movements calculated as energy relationships by forces acting through different bond positions can help improve on current Mechanomolecular Theory. A previous controversy reported as a discrepancy in literature contends for a possible bacterial resistance from Triclosan antimicrobial. However, findings in clinical settings have not reported a single case for Triclosan bacterial resistance in over 40 years that has been documented carefully in government reports. As a result, Triclosan is recommended whenever there is a health benefit consistent with a number of approvals for use of Triclosan in healthcare devices. Since Triclosan is the most researched antimicrobial ever, literature meta analysis with computational chemistry can best describe new molecular conditions that were previously impossible by conventional chemistry methods. Triclosan vibrational energy can now explain the molecular disruption of bacterial membranes. Further, Triclosan mechanomolecular movements help illustrate use in polymer matrix composites as an antimicrobial with two new additive properties as a toughening agent to improve matrix fracture toughness from microcracking and a hydrophobic wetting agent to help incorporate strengthening fibers. Interrelated Mechanomolecular Theory by oxygen atom bond rotations or a nitrogen-type pyramidal inversion can be shown to produce energy at a polar and nonpolar boundary condition to better make clear membrane transport of other molecules, cell recognition/signaling/defense and enzyme molecular "mixing" action.
منابع مشابه
Triclosan antimicrobial polymers
Triclosan antimicrobial molecular fluctuating energies of nonbonding electron pairs for the oxygen atom by ether bond rotations are reviewed with conformational computational chemistry analyses. Subsequent understanding of triclosan alternating ether bond rotations is able to help explain several material properties in Polymer Science. Unique bond rotation entanglements between triclosan and th...
متن کاملA Computational Study on the Configurational Behaviors of Dihalodiazenes and their Analogues Containing P and As Atoms
In this research, we report the results of DFT calculations using xc-hybrid functional, B3LYP and employ NBO interpretation to investigate the stereoelectronic effects. Electrostatic and steric impacts on the conformational properties of 1,2-difluorodiazene (1), 1,2-dichlorodiazene (2) and 1,2-dibromodiazene (3) are also studied. Factors determining the thermodynamically stable molecular struct...
متن کاملComparative Computational Studies of 1,4-Diformyl-piperazine and 1,4-Dithionyl-Piperazine
The molecular properties known to play an essential role in drug-receptor interaction of substructures models of bioactive molecules have been studied using chemical quantum calculations. 1,4-diformyl-piperazine and 1,4-dithionyl-piperazine have been used as models to probe conformational behaviors and some electronic properties of substructure of some tri-substituted piperazine showing dual an...
متن کاملMechanical, Rheological and Computational Study of PVP/PANI with Additives
Polyvinylpyrrolidone/polyaniline emeraldine salt (PVP/PANI) with additives (TiO2, ZnO, NaCl, and Na2SO4) was synthesized via oxidative in situ polymerization. Because of using PVP/PANI as a protective membrane layer and its applications in an electrical device, we investigated the mechanical and rheological properties of PVP/PANI and other composites in orde...
متن کاملConformational analysis of N- and C-terminally protected tripeptide model glycyl-isoleucine-glycyl: An ab initio and DFT study
An ab initio and density functional theory (DFT) study about conformational analysis of tripeptide model HCO−GLY−L−ILE−GLY−NH2 is presented. The tripeptide was scanned about initial, central, and final residues, separately while for every scanning procedure the two other residues had been kept in the β conformation and side chain (SC) dihedral angles were maintained on the gauche− (g‾) state (χ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of nature and science
دوره 1 3 شماره
صفحات -
تاریخ انتشار 2015